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Abstract

In this paper, we present an abstract framework for
Web site verification which improves the performance of
a previous, rewriting-based Web verification methodology.
The approximated framework is formalized as a source-to-
source transformation for compressing (and abstracting)
Web sites which is parametric w.r.t. the chosen abstrac-
tion. This transformation significantly reduces the size of
the Web documents by dropping or merging contents that
do not influence the properties to be checked. This allows
us to reuse all verification facilities of the previous system
WebVerdi-M to efficiently analyze Web sites. In order to
ensure that the verified properties are not affected by the
abstraction, we develop a methodology which derives an
abstraction of Web sites from their Web specification. We
believe that this methodology can be successfully embed-
ded into several frameworks. In particular we have devel-
oped a prototypical implementation which shows a huge
speedup w.r.t. a previous methodology which did not use
this transformation.
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1 Introduction

Despite the exponential WWW growth and the success
of the Semantic Web, there is limited support today to
specifying, verifying and repairing Web sites at a seman-
tic level. Some sophisticated Web site management tools
have been recently proposed that provide helpful facili-
ties, including active rules that automatically fire repair
actions throughout the rich navigational structure of Web
sites. Unfortunately, these tools are mostly focused to-
wards syntactic checking and Web sites restructuring (see
[4, 5, 6] for a wider discussion).

A rewriting-based approach to Web-site verification
and repair was developed in [4, 8]. The methodology
applies to static-HTML/XML Web sites and can discover
flaws in Web sites that are not addressed by classical tools
[3, 20, 29] as these mainly focus on modeling naviga-
tional aspects and user interaction; see [2] for a compar-
ison of different modeling methods for Web site verifi-
cation and testing. In a nutshell, our framework comes
with a Web specification language for defining correct-
ness and completeness conditions on Web sites. Then, a
rewriting-based verification technique is applied to recog-
nize forbidden/incorrect patterns and incomplete/missing
Web pages. This is done by means of a novel technique,
called partial rewriting, in which the traditional pattern
matching mechanism is replaced by a suitable technique
based on an homeomorphic embedding relation for recog-
nizing patterns inside semistructured documents.

The verification methodology of [4] is implemented in
the prototype WebVerdi-M (Web Verification and Rewrit-



ing for Debugging Internet sites with Maude) [6], whose
Web verification engine is written in Maude [14]. For
correctness checking, it shows impressive performance
thanks to the Associativity-Commutativity (AC) pattern
matching and metalevel features supported by Maude (for
instance, verifying correctness over a 10Mb XML docu-
ment with 302000 nodes takes less than 13 seconds). In
fact, both resource allocation and elapsed time scale lin-
early. Unfortunately, for the verification of completeness,
a (finite) fixpoint computation is typically needed which
leads to unsatisfactory performance, and the verification
tool is only able to efficiently process XML documents
whose size is not bigger than 1Mb.

In this paper, we develop an approach to Web site ver-
ification which makes use of an approximation technique
based on abstract interpretation [16, 17] that greatly im-
proves on previous performance. We provide an abstrac-
tion scheme where both the Web site and the Web speci-
fication rules are translated into constructions of the orig-
inal source languages. We also ascertain the conditions
which ensure the correctness of the approximation, so that
the resulting abstract rewriting engine safely supports ac-
curate Web site verification. Since our framework is para-
metric w.r.t. the considered abstraction, we precisely char-
acterize the conditions which allow to ensure the correct-
ness of the abstraction, which is implemented by a source-
to-source transformation of concrete Web sites and Web
specifications into abstract ones. Thanks to this source-
to-source approximation scheme, all facilities supported
by our previous verification system are straightforwardly
adapted and reused with very little effort. It is also worth
mentioning that our abstract verification methodology can
be seen as a step forward towards more sophisticated man-
agement of dynamic components of Web sites, which can
generate a potentially infinite number of Web pages and
thus cannot be handled by the more standard methodol-
ogy in [4].

Related Work In the literature, abstract interpretation
frameworks have been scarcely applied to analyse Web
sites. Actually, we have found very few works addressing
this issue, and all of them focus on the dynamic aspects
of the distributed system underlying the Web site. For in-
stance, in [26] an abstract approach is developed which
allows one to analyse the communication protocols of a
particular distributed system with the aim of enforcing a
correct global behavior of the system. [23] uses abstract
interpretation for secret property verification: the method-
ology applies Input/Output abstract set descriptions to fi-
nite state machines in order to validate cryptographic pro-
tocols implementing secure Web transactions.

To the best of our knowledge, this work develops the

first methodology based on abstract interpretation tech-
niques which is general enough to support the verification
of static as well as dynamic aspects of Web sites. Our
inspiration comes from the area of approximating (XML)
query answering [12, 30], where XML queries are exe-
cuted on compressed versions of XML data (i.e., docu-
ment synopses) in order to obtain fast, albeit approximate,
answers. Roughly speaking, document synopses represent
abstractions of the original data on which abstract compu-
tations (i.e., queries) are performed.

In our methodology, both the XML documents (Web
pages) and the constraints (Web specification rules) are
approximated via an abstraction function. Then, the verifi-
cation process is carried out using the abstract descriptions
of the considered XML data. This approach results in
a powerful abstract verification methodology which pays
off in practice. In fact, the preliminary experiments re-
ported in Section 5 are quite encouraging and verify the
viability of the proposed techniques in terms of both ac-
curacy and processing time on large datasets.

Plan of the Paper The paper is organized as follows.
Section 2 recalls some standard notions, and introduces
Web site descriptions. In Section 3, we briefly recall the
Web verification methodology of [4]. Section 4 formalizes
the notion of abstract Web specification and introduces the
key idea behind our method, which is given by an approx-
imation algorithm which derives an abstraction of Web
sites from their Web specifications and drastically reduces
the size of the Web documents. Then we formalize the
abstract partial rewriting and illustrate how the original
rewriting-based Web-site verification technique of [4] can
be safely approximated by the abstract framework. Exper-
iments with a prototypical implementation of our method
are described in Section 5. Finally, Section 6 concludes.

2 Preliminaries

We call a finite set of symbols alphabet. By V we de-
note a countably infinite set of variables and Σ denotes
a set of function symbols (also called operators), or sig-
nature. We consider varyadic signatures as in [18] (i.e.,
signatures in which symbols do not have a fixed arity).

Terms are viewed as labelled trees in the usual way.
Positions are represented by sequences of natural numbers
denoting an access path in a term. The empty sequence
Λ denotes the root position. Given S ⊆ Σ ∪ V , OS(t)
denotes the set of positions of a term t that are rooted by
symbols in S. t|u is the subterm at the position u of t.
t[r]u is the term t with the subterm rooted at the position
u replaced by r. Given a term t, we say that t is ground, if



no variable occurs in t. τ(Σ,V) and τ(Σ) denote the non-
ground term algebra built on Σ ∪ V and the term algebra
built on Σ, respectively.

Syntactic equality between objects is represented by≡.
Given a set S, sequences of elements of S are build by
using constructors ε :: S∗ (the empty sequence) and . ::
S × S∗ → S∗.

A substitution σ ≡ {X1/t1, . . . , Xn/tn} is a mapping
from the set of variables V into the set of terms τ(Σ,V)
satisfying the following conditions: (i) Xi �= Xj , when-
ever i �= j, (ii) Xiσ = ti, i = 1, ..n, and (iii) Xσ = X ,
for all X ∈ V \ {X1, . . . , Xn}. An instance of a term
t is defined as tσ, where σ is a substitution. By Var(s)
we denote the set of variables occurring in the syntactic
object s.

2.1 Web Site Description

Let us consider two alphabets T and Tag . We denote
the set T ∗ by Text . An object t ∈ Tag is called tag
element, while an element w ∈ Text is called text ele-
ment. Since Web pages are provided with a tree-like struc-
ture, they can be straightforwardly translated into ordinary
terms of the term algebra τ(Text ∪ Tag) [4] as shown in
Figure 1.

<people> people(
<person> person(

<id>per0</id> id(per0),
<name>Conte</name> name(Conte)

</person> )
</people> )

Figure 1. A Web page and its corresponding
encoding as a ground term

Note that XML/XHTML tag attributes can be consid-
ered as common tagged elements, and hence translated in
the same way. In the following, we will also consider
terms of the non-ground term algebra τ(Text ∪ Tag,V),
which may contain variables. An element s ∈ τ(Text ∪
Tag,V) is called Web page template. In our methodol-
ogy, Web page templates are used for specifying erro-
neous/incorrect patterns which may be recognized in the
Web pages.

In order to describe a Web site, we use the formulation
given in [28]. We use an alphabet P to give names to
Web pages as well as to express the different transitions
between Web pages.

Definition 2.1 (immediate successors) The immediate
successors relation for a given Web page p is defined by

→p= {(p, p′) ⊆ P × P | p′ is directly accessible from
p}.

Definition 2.1 establishes a relationship between the
page p and its immediate successors (i.e., the pages
p1, . . . , pn which are commonly pointed to from p by
means of hyperlinks).

The pair (P ,→P), where→P =
⋃

p∈P →p, is an Ab-
stract Reduction System (see ARS [7], Chapter 2). We
will use the associated computational relations→P ,→+

P ,
etc., to describe the dynamic behavior of a Web site. In
this context, the reachability of a given Web page p ′ from
another page p can be expressed as p→∗

P p′.

Definition 2.2 (Web site) A Web site is defined as a set
of reachable Web pages from an initial Web page, and is
denoted by

W = {p1, . . . , pn}, s.t. ∃i, 1 ≤ i ≤ n,
∀j, 1 ≤ j ≤ n, pi →∗

W pj

Definition 2.2 formalizes the idea that a Web site has an
initial Web page which allows one to visit the whole Web
site. Note that there may exist several initial Web pages of
a given Web site.

Example 2.3 The algebraic description of a simple Web
site modeling an on-line auction system is shown in Fig-
ure 2. It contains information regarding open and closed
auctions, auctioned items, and registered users.

3 Rewriting-based Web Verification

In this section, we briefly recall the formal verification
methodology proposed in [4], which allows us to detect
forbidden/erroneous contents as well as missing informa-
tion in a Web site. This methodology is able to recognize
and exactly locate the source of a possible discrepancy be-
tween the Web site and the properties required in the Web
specification.

3.1 The Web specification language

A Web specification is a triple (R, IN , IM ), where R,
IN , and IM are a finite set of rules. The set R contains
the definition of some auxiliary functions which the user
would like to provide, such as string processing, arith-
metic, boolean operators, etc. R is formalized as a term
rewriting system, which is handled by standard rewriting
[19, 24, 31]. The rewriting mechanism executes function
calls by simply reducing them to their irreducible form
(that is, a term that cannot be rewritten further). The
set IN describes constraints for detecting erroneous Web



Web site W = {p1, p2, p3, p4, p5}, where
p1) list-items(

item(id(ite0),name(racket),state(sold),
description(Wilson tennis racket),
incategories(category(cat1))),

item(id(ite1),name(shirt),state(available),
description(men’s t-shirts),
incategories(category(cat1),

category(cat2))),
item(id(ite2),name(shoes),state(sold),

description(women’s shoes),
incategories(category(cat0),

category(cat2))) )

p2) list-categories(
pack(category(cat0)),
unit(category(cat1),

category(cat2)) )

p3) people(
person(id(per0),

name(Eliyahu),
email(eliyahu@cas.cz)),

person(id(per1),
name(Melski),
email(melski@cabofalso.com)),

person(id(per2),
name(Conte),
email(conte@forth.gr)),

person(id(per3)) )

p4) open-auctions(
open-auction(id(open-auction0),

item(ite0),
initial(48.51), reserve(77.5),
bidder(person(per0)),
seller(person(per1))) )

p5) closed-auctions(
closed-auction(

seller(person(per1)),
buyer(person(per0)),
item(ite0), price(77.5)),

closed-auction(
seller(person(per5)),
buyer(person(per0)),
item(ite2), price(45.2)) )

Web specification (IN , IM , R), where IN = {r1, r2} and IM = {r3, r4, r5},
r1) open-auction(initial(X),reserve(Y)) ⇀ error : X > Y
r2) person(email(X)) ⇀ error : X not in [:Text:]+ @ [:Text:]+

r3) open-auction(seller(person(X))) ⇀ �person(�id(X)) 〈E〉
r4) list-items(item(incategories(X,Y))) ⇀ �list-categories(pack(X),unit(Y)) 〈E〉
r5) people(person(id(X))) ⇀ �people(�person(�id(X)),name) 〈A〉
r6) list-item(item(id(X),state(sold)) ⇀ �closed-auction(item(X)) 〈E〉

Figure 2. Web site and Web specification for an on-line auction system.

pages (correctNess rules). A correctness rule has the fol-
lowing syntax:

l ⇀ error | C

where l is a term, error is a reserved constant, and C
is a (possibly empty) finite sequence which could contain
membership tests of the form X ∈ rexp w.r.t. a given reg-
ular language rexp;1 and/or equations/inequalities over
terms.

When C is empty, we simply write l ⇀ error. In-
formally, the meaning of a correctness rule is the fol-
lowing: whenever (i) a “piece” of a given Web page
p ∈ τ(Text ∪ Tag) can be “recognized” to be an instance
lσ of l, and (ii) the corresponding instantiated condition
Cσ holds in R, then Web page p is marked as an incorrect
page with erroneous content lσ.

1Regular languages are represented by means of the usual Unix-like
regular expression syntax; see e.g. rule r1 of Example 3.1.

The third set of rules IM specifies some properties for
discovering incomplete/missing Web pages (coMplete-
ness rules). A completeness rule is defined as

l ⇀ r 〈q〉

where l and r are terms and q ∈ {E, A}. Completeness
rules of a Web specification formalize the requirement that
some information must be included in all or some pages
of the Web site. We use attributes 〈A〉 and 〈E〉 to distin-
guish “universal” from “existential” rules, as explained
below. Right-hand sides r of completeness rules can con-
tain functions, which are defined in R. Moreover, some
symbols in the right-hand sides of the rules may be marked
by means of the symbol �. Marking information in a given
rule r is used to select the subset of the Web site where
the condition formalized by the rule must be checked. In-
tuitively, the interpretation of a universal rule l ⇀ r 〈A〉
(respectively, an existential rule l ⇀ r 〈E〉) w.r.t. a Web



site W is as follows: if (an instance of) l is “recognized” in
W , (an instance of) the irreducible form of r must also be
“recognized” in all (respectively, some) of the Web pages
that embed (an instance of) the marked structure of r.

Example 3.1 A Web specification for the on-line auction
system of Example 2.3 is shown in Figure 2. The first two
rules are correctness rules while the other three rules are
completeness rules. The first rule requires that, in a open
auction, the reserve price (or the lower price at which a
seller is willing to sell an item) is greater than the initial
one. The second rule requires email addresses to con-
tain the symbol @, by checking whether they belongs to
the regular language given by the expression [:Text:]+ @
[:Text:]+. The third (existential) rule formalizes the fol-
lowing property: if there is a Web page with the informa-
tion about the seller of an open-auction, then such a seller
must be registered. The fourth rule also states an existen-
tial property: if there is an auctioned item that is listed
in two or more categories, then at least one of these cate-
gories must be “unit” and the other one “pack”. The fifth
rule formalizes the following universal property: for each
client registered in the Web site, there must exist a page
containing his name. Finally, the last rule states that, for
every item that is sold, a closed auction associated to the
item must exist.

3.2 Homeomorphic embedding and par-
tial rewriting

Partial rewriting extracts “some pieces of information”
from a page, pieces them together, and then rewrites the
glued term. The assembling is done by means of home-
omorphic embedding, which allow us to verify whether a
given Web page template is somehow “enclosed” within
another one. Roughly speaking, we consider a simple em-
bedding relation which closely resembles the notion of
simulation [22]. This relation has been widely used in
a number of works about querying, transformation, and
verification of semistructured data (cf. [1, 9, 10, 11, 21]).

We give a definition of homeomorphic embedding, �,
which is an adaptation of the one proposed in [27], where
(i) a simpler treatment of the variables is considered, (ii)
function symbols with variable arities are allowed, (iii) the
relative positions of the arguments of terms are ignored
(i.e. f(a, b) is not distinguishable from f(b, a)), and (iv)
we ignore the usual diving rule2 [27].

2The diving rule allows one to “strike out” a part of the term at the
right-hand side of the relation �. Formally, s � f(t1, . . . tn), if s � ti,
for some i.

Definition 3.2 (homeomorphic embedding) The home-
omorphic embedding relation

�⊆ τ(Text ∪ Tag,V) × τ(Text ∪ Tag,V)

on Web page templates is the least relation satisfying the
rules:

1. X � t, for all X ∈ V and t ∈ τ(Text ∪ Tag,V).

2. f(t1, . . . , tm) � g(s1, . . . , sn) iff f ≡ g
and ti � sπ(i), for i = 1, . . . , m, and some
total, injective function π : {1, . . . , m}
→ {1, . . . , n}.

Whenever s � t, we say that t embeds s (or s is embedded
or “recognized” in t).

The intuition behind the above definition is that s � t
iff s can be obtained from t by striking out certain parts. In
other words, the structure of the template s appears within
the specific Web data term t.

Let us illustrate Definition 3.2 by means of a rather in-
tuitive example.

Example 3.3 Consider the following Web page templates
(called s1 and s2, respectively):

people(person(email(X), id(Y )))
people(person(id(per0),

name(Eliyahu),
email(eliyahu@cas.cz)))

Note that the structure of s1 can be recognized inside
the structure of s2 hence s1 � s2, while s2 �� s1. Also
note that the order of the arguments is irrelevant.

Now we are ready to introduce the partial rewrite rela-
tion between Web page templates. W.l.o.g., we disregard
conditions and/or quantifiers from the Web specification
rules. Roughly speaking, given a Web specification rule
l ⇀ r, partial rewriting allows us to extract from a given
Web page s a subpart of s which is simulated by a ground
instance of l, and to replace s by a reduced, ground in-
stance of r. Let s, t ∈ τ(Text ∪Tag,V). Then, s partially
rewrites to t via rule l ⇀ r and substitution σ iff there ex-
ists a position u ∈ OTag(s) such that (i) lσ � s|u, and (ii)
t = Reduce(rσ, R), where function Reduce(x, R) com-
putes, by standard term rewriting, the irreducible form of
x in R. Note that the context of the selected reducible ex-
pression s|u is disregarded after each partial rewrite step.
By notation s ⇀I t, we denote that s is partially rewritten
to t using a rule belonging to the set I .



3.3 Web verification methodology

Roughly speaking, our verification methodology works
as follows. First, by using the homeomorphic embedding
relation of Definition 3.2, we check whether the left-hand
side l of some Web specification rule is embedded into a
given page p of the considered Web site. When the em-
bedding test l � p succeeds, by extending the proof, we
construct the biggest substitution3 σ for the variables in
V ar(l), such that lσ � p. Then, depending on the nature
of the Web specification rule (correction or completeness
rule), we proceed as follows:

Correction rule. We evaluate the condition of the rule
(instantiated by σ); a correctness error is signalled in the
case when the error condition is fulfilled. Formally, the
definition of a correctness error is as follow.

Definition 3.4 (correctness error) Let W be a Web site
and (IN , IM , R) be a Web specification. Then, the
quadruple (p, w, l, σ) is a correctness error iff p ∈
W, w ∈ OTag(p), and lσ is an instance of the left-hand
side l of a correctness rule belonging to IN such that
lσ � p|w.

Completeness rule. We apply a partial rewriting step to
p, that is, we replace the Web page p embedding lσ with
the instantiated right-hand side rσ, in symbols p ⇀ rσ.
Each term rσ generated by partial rewriting is considered
a requirement.
Then, by a new homeomorphic embedding test, we check
whether the given requirement rσ is recognized within
some page of the considered Web site. Otherwise, a com-
pleteness error (missing Web page, universal error or ex-
istential error) is signalled. From the requirements com-
puted so far, new requirements are generated and sub-
sequently checked by applying further partial rewriting
steps. A fixpoint computation is performed which may
involve the execution of several completeness rules. The
formal definition of completeness errors is below.

Definition 3.5 (missing Web page) Let W be a Web site
and (IN , IM , R) be a Web specification. Then the pair
(r, W ) is a missing Web page error if there exists p ∈ W
s.t. p ⇀+

IM
r and r ∈ τ(Text ∪ Tag) does not belong to

W .

When a missing web page error is detected, the evi-
dence (r, W ) signals that the expression r does not appear

3The substitution σ is easily obtained by composing the bindings
X/t, which can be recursively gathered during the homeomorphic em-
bedding test X � t, for X ∈ l and t ∈ p.

in the whole Web site W . In order to formalize existential
as well as universal completeness errors, we introduce the
following auxiliary definition.

Definition 3.6 Let P be a set of terms in τ(Text ∪ Tag)
and r ∈ τ(Text ∪ Tag). We say that P is universally
(resp. existentially) complete w.r.t. r iff for each p ∈ P
(resp. for some p ∈ P ), there exists w ∈ OTag(p) s.t.
r � p|w.

Definition 3.7 Universal and Existential completeness
error. Let W be a Web site and (IN , IM , R) be a Web
specification. Then the triple (r, {p1, . . . , pn}, q), with
q = A (resp. q = E) is a universal (resp. existential)
completeness error, if there exists p ∈ W s.t. p ⇀+

IM
r

and {p1, . . . , pn} is not universally (resp. existentially)
complete w.r.t. r, pi ∈ W, i = 1, . . . , n.

Example 3.8 Consider again the Web specification and
Web site W of Example 3.1. Then, the set of completeness
requirements computed in the fixpoint by our verification
methodology is

Sreq = {rq1, rq2, rq3, rq4, rq5, rq6, rq7, rq8, rq9, rq10},
where

rq1)〈�person(�id(per1)), E〉,
rq2)〈�person(�id(per5)), E〉,
rq3)〈�list-categories(pack(category(cat1)),

unit(category(cat2))), E〉,
rq4)〈�list-categories(pack(category(cat0)),

unit(category(cat2))), E〉,
rq5)〈�closed-auction(item(ite0)), E〉,
rq6)〈�closed-auction(item(ite2)), E〉,
rq7)〈�people(�person(�id(per0), name)), A〉,
rq8)〈�people(�person(�id(per1), name)), A〉,
rq9)〈�people(�person(�id(per2), name)), A〉,
rq10)〈�people(�person(�id(per3), name)), A〉

Now, by a new homeomorphic embedding test, we
check whether each requirement in the set Sreq is recog-
nized inside some page of the Web site W . This produces
the following set of completeness errors

EM = {e1, e2, e3}, where
e1)〈rq2, {p3}, E〉
e2)〈rq3, {p2}, E〉
e3)〈rq10, {p3}, A〉

Note that no correctness error exists in W w.r.t. the
considered Web specification.



4 Abstract Web site verification

Let us first introduce the notion of an abstract domain.
Our first definition is motivated by the fact that we want to
formalize the abstraction as a source–to–source transfor-
mation which translates Web documents and Web specifi-
cation rules into constructions of the very same languages,
hence our concrete and abstract domains do coincide.

Definition 4.1 abstract non-ground term algebra,
poset. Let D = (τ(Text ∪ Tag,V),≤) be the standard
domain of (equivalence classes of) terms, ordered by the
standard partial order≤ induced by the preorder on terms
given by the relation of being “more general”.

Then the domain of abstract terms Dα is equal to D.

We define the abstraction (tα) of a term t as: tα =
α(t). Our framework is parametric w.r.t. the abstraction
function α, which can be used to tune the accuracy of the
approximation.

For example, depending on the Web specification, an
abstraction function for digital libraries could be required
to discriminate text that appears immediately below the
tags that introduce books, or journals, while information
appearing at deeper nesting levels within the page proba-
bly would not be distinguished. For on–line auctioning, a
convenient abstraction function would be better defined as
to distinguish registered bidders and sellers, and auctioned
items.

Definition 4.2 (term abstraction α) Let atext :: Tag ∗×
Text → Text be a text abstraction function.

α :: τ(Text ∪ Tag,V)→ τ(Text ∪ Tag,V)
α(t) = α̂(ε, t)

where the auxiliary function α̂ is given by

α̂ :: Tag∗ × τ(Text ∪ Tag,V)→ τ(Text ∪ Tag,V)
α̂( , x) =x, if x ∈ V

α̂(c, f(t1, . . . , tn)) = f(α̂(c.f, t1), .., α̂(c.f, tn)), if f ∈ Tag
α̂(c, w) = atext(c, w), if w ∈ Text

Particularly, the reader may notice that elements of
Text are abstracted by taking into account the chain of
tags under which a particular piece of text appears. This
is formalized by means of the text abstraction function

atext :: Tag∗ × Text → Text
which is left undefined and is actually the formal parame-
ter of the definition.

The text abstraction function atext should be conve-
niently fixed in order to tune the abstraction for each par-
ticular domain. For instance, in the case where no tag
distinction is needed, each element in text could be simply
replaced by some abstract fresh, constant symbol d.

Example 4.3 Consider again the Web page p2 of Exam-
ple 2.3. By fixing

atext( , w) = first(w), where first(x.xs) = x,

the resulting abstraction of p2 is

α(p2) = list-categories(
pack(category(c)),
unit(category(c),

category(c)))

Note that this abstraction function produces indistinct-
ness among leaves of a term that influence the properties
to be verified. As a consequence of this lack of precision,
by fixing this abstration we would not be able to detect the
error e2 of Example 3.8 anymore.

In order to achieve correctness of the abstraction, we
restrict our interest to text abstraction functions atext
which distinguish those pieces of text that are observed
by the Web specification rules and then potentially affect
the result of the verification.

The following auxiliary functions allow us to know
whether a sequence of tags is recognized within some rule
of the Web specification. This allows us to determine
whether the term occuring at the corresponding position
in the Web page needs to be carefully considered. Let J
be a Web specification and s ∈ τ(Text ∪ Tag,V). Let
c ∈ Tag∗ and t ∈ Text . The function text term(c, t)
returns the term that is obtained by composing as a term
the tags of the sequence c together with the piece of text
t. For instance, text term(f.g, a) = f(g(a)). We de-
fine the boolean function gen embJ (s) that returns True
if there is a (sub)term t occuring in the left–hand or
rigth–hand side of a rule in J such that some instance
t′ of t embeds s, in symbols s � t′; otherwise it re-
turns False. For instance, for the Web specification
J = {f(h(Y ), g(X)) ⇀ m(X)} and the term f(g(a)),
gen embJ (f(g(a))) = True.

When no confusion can arise, we just write
gen emb ttJ (c, s) by gen embJ (text term(c, s)).

Now text abstraction functions are required to obey the
following correctness condition w.r.t. W .

Definition 4.4 (correctness condition w.r.t. W ) Let W
be a Web site and J be a Web specification. Let
s, t ∈ Text be any two pieces of text in W . For ev-
ery c ∈ Tag∗ such that gen emb ttJ (c, s) ≡ True and
gen emb ttJ (c, t) ≡ True, the text abstraction function
atext satisfies

s �≡ t⇒ atext(c, s) �≡ atext(c, t)



The condition above formalizes the idea that, whenever
two pieces of text are indistinguishable in the abstract do-
main, then they are also indistinguishable in the concrete
domain.

4.1 Abstract Web specification

The abstraction of the correctness and completeness
Web specification rules is simply based on abstracting the
terms occurring in the left-hand and right-hand sides of the
rules. In particular, the conditional parts of the correctness
rules are not abstracted, and hence we let concrete condi-
tions to be applied to concrete as well as abstract data.

Definition 4.5 (abstract specification rule) Let

α :: τ(Text ∪ Tag,V)→ τ(Text ∪ Tag,V)

be a term abstraction function with text abstraction func-
tion atext :: Tag∗ × Text → Text .

Let rlM ≡ l ⇀ r〈q〉 be a completeness rule and rlN ≡
l ⇀ error|C be a correctness rule. We denote by rlα

M

(resp. rlαN ) the abstraction of rlM (resp. rlN ), where
rlαM ≡ α(l) ⇀ α(r)〈q〉 (resp. rlαN ≡ α(l) ⇀ error|C).

Example 4.6 Consider the completeness rule r6 of Ex-
ample 3.1. By fixing the text abstraction function
atext(c, x) = last(x) where last(w) returns the last ele-
ment of the sequence w, the computed abstract complete-
ness rule α(r6) is list-item(item( id(X), state(d)) ⇀
�closed-auction(item(X))〈E〉.

When no confusion can arise, we just write rlα
M ≡

lα ⇀ rα〈q〉 (resp. rlαN ≡ lα ⇀ error|C). The Web spec-
ification (IN , IM , R) is lifted to (Iα

N , Iα
M , R) element–

wise.
To ensure the soundness of the abstract framework, we

need to precisely relate the satisfiability of the conditions
over abstract and concrete data. Specifically, we require
that the fulfillment of an abstract condition implies the ful-
fillment of the corresponding concrete description.

Definition 4.7 (correctness condition w.r.t. IN )
Let α :: τ(Text ∪Tag,V)→ τ(Text ∪Tag,V) be a term
abstraction function with text abstraction function atext ::
Tag∗ × Text → Text . Let rl ≡ l ⇀ error|C be a
correctness rule. Then, α is correct w.r.t. rl iff for each
substitution σ ≡ {X1/t1, . . . , Xn/tn}

Cσα holds ⇒ Cσ holds

where σα ≡ {X1/α(t1), . . . , Xn/α(tn)}.
Moreover, α is correct w.r.t. IN if it is correct w.r.t.

every correctness rule of IN .

4.2 Abstract Web site

When navigating a Web site, it is common to find a
number of pages that have a similar structure but differ-
ent contents. This happens very often when pages are dy-
namically generated by some script which extracts con-
tents from a database (e.g. in Amazon’s Web site). This
can make our simple analysis impracticable unless we are
able to provide a mechanism to drastically reduce the Web
size. In order to ensure that the verified properties are not
affected by the abstraction, in this section we develop an
abstract methodology which derives an approximation of
web sites from the considered Web specifications.

Let us introduce a compression function for terms
which reduces the size of each singular Web page by drop-
ping some arguments from the term that represents the
page, possibly reducing the number of branches of the
tree. We use this function as a preprocess prior to the ab-
straction of a given Web site.

4.2.1 Web Compression pre–processing

Let (IN , IM , R) be a Web specification and s, t ∈
τ(Text ∪ Tag). We define three auxiliary functions root,
join, and max ar. We denote by root(s) the func-
tion symbol at the top of s, in symbols root(f(s1, . . . ,
sn)) = f . The function join(s, t) returns the term that
is obtained by concatenating the arguments of terms s and
t (if they exist), whenever root(s) = root(t). For in-
stance, join(f(a, b, c), f(b, e)) = f(a, b, c, b, e). Finally,
function max ar(f, IM ) returns the maximal arity of f in
IM .

Definition 4.8 (correctness condition w.r.t. IM ) Let
(IN ,
IM , R) be a Web specification. Then, the term
f(t1, ..., tn) ∈ τ(Text ∪ Tag) is compressed by us-
ing function COMPRESS given in Algorithm 1, which
packs together those subterms which are rooted by the
same root symbol while ensuring that the arity of f after
the transformation is not smaller than max ar(f, IM ).

The idea behind Definition 4.8 is as follows. Roughly
speaking, all arguments with the same root symbol f ocur-
ring at level i are joined together. Then, compression re-
cursively proceeds to level (i + 1). The condition that the
maximal arity of f in IM must be respected is essential
for the correctness of our method, as this condition en-
sures that a partial rewrite step on an abstract term is al-
ways enabled, whenever the corresponding partial rewrite
step can be executed in the concrete domain. Let us see an
example.



Algorithm 1 Term Compression Transformation.
Input:

Term t = f(t1, . . . , tn)
IM a set of completeness rules

Output:
Term f(t′1, . . . , t

′
m), with m ≤ n

1: function COMPRESS (t)
2: if n = 0 then
3: ← f
4: else if max ar(f, IM ) < n and

∃ i, j s.t. root(ti) = root(tj) then
5: t′ ← join(ti, tj)
6: ← COMPRESS(f(t1, . . . , ti−1, t

′, ti+1, . . . ,
tj−1, tj+1, . . . , tn), IM )

7: else
8: ← f(COMPRESS(t1, IM ), . . . , COMPRESS(tn, IM ))
9: end if

10: end function

Example 4.9 Consider the Web page p1 and the com-
pleteness rule r4 of Example 3.1. The left–hand side of
rule r4 is embedded in p1, in symbols

list-items(item(incategories(X, Y ))) � p1

If we naı̈vely compress p1 without respecting the maximal
arity in IM of function symbol “incategories”, we would
get

p′1 = list-items(
item(id(ite0), name(racket),

description(Wilson tennis racket),
incategories(category(cat1))),

item(id(ite0), name(shirt),
description(men’s t-shirts),
incategories(category(cat1,cat2))),

item(id(ite2), name(shoes),
description(women’s shoes),
incategories(category(cat0,cat2))) )

Unfortunately,

list-items(item(incategories(X, Y ))) �� p′1

since in p′1 the arity of the symbol “incategories” is
lower than in the lhs of r4.

Now we are ready to formalize our notion of Web site
approximation.

4.2.2 Web site abstraction

In order to approximate a Web site, we start from an ini-
tial Web page and recursively apply the successor rela-
tion (→), while implementing a simple depth-first search
(DFS) [15].

Definition 4.10 (Abstract Web Site) Let W be a Web
site, p be an initial page of W , and (IN , IM , R) be a Web
specification. Then, the abstraction of W is defined by:

α(W ) = DFS(p, ∅, IM )

Where function DFS is given in Algorithm 2.

Note that, after applying the transformation above, the
information in the Web pages as well as the number of
pages in the Web site can be significantly reduced.

Algorithm 2 Web site abstraction.
Input:

p :: τ(Text ∪ Tag,V)
Wα :: set(τ(Text ∪ Tag,V))
IM a set of completeness rules

Output:
Wα = set (τ(Text ∪ Tag,V))

1: function DFS (p, W α)
2: pα ← COMPRESS(α(p), IM )
3: Wα ←Wα ∪ {pα}
4: for all i s.t. (p, pi) ∈→p and

COMPRESS(α(pi), IM ) �∈Wα do
5: Wα ← DFS(pi, Wα)
6: end for
7: ←Wα

8: end function

4.3 Abstract verification soundness

The abstraction function given in Definition 4.2 defines
an abstraction by a source-to-source transformation. Due
to this source-to-source approximation scheme, all facili-
ties supported by our previous verification system can be
straightforwardly adapted and reused with very little ef-
fort.

Informally, our abstract verification methodology ap-
plies to the considered abstract descriptions of the Web
site and Web specification. Given a Web specification
(IN , IM , R) and a Web site W , we first generate the
corresponding abstractions (I α

N , Iα
M , R) and W α. Then

— since we consider a source to source transforma-
tion — we apply our original verification algorithm [4]
to analyse W α w.r.t. (Iα

N , Iα
M , R). We call abstract

correctness (resp., completeness) error, each correctness
(resp., completeness) error which is detected in W α using
(Iα

N , Iα
M , R) by the verification methodology.

In order to guarantee the soundness of the abstract di-
agnosis, we have to ensure that, when fed with the ab-
stracted data, the partial rewriting relation, ⇀, correctly



approximates the behavior of the partial rewriting relation
over the corresponding concrete representation. In the fol-
lowing, we present some results which state the soundness
of our abstract representation. First of all we introduce the
notion of abstract embedding, which is used to establish a
relation between concrete and abstract terms.

Definition 4.11 (abstract embedding) The abstract em-
bedding relation

�� ⊆ τ(Text ∪ Tag,V) × τ(Text ∪ Tag,V)

w.r.t. a function atext :: Tag∗ × Text → Text on Web
page templates is the least relation satisfying the rules:

1. X �� t, for all X ∈ V and t ∈ τ(Text ∪ Tag,V).

2. f(t1, . . . , tm) �� g(s1, . . . , sn) iff f ≡ g and ti ��

sπ(i), for i = 1, . . . , m, and some total function π ::
{1, . . . , m} → {1, . . . , n}.

3. c �� c′ iff c′ ≡ atext(x, c) for some x ∈ Tag∗.

Given t1, t2 ∈ τ(Text ∪ Tag,V) such that t1 �� t2 w.r.t.
atext :: Tag∗ × Text → Text , we say that t2 safely
approximates t1.

Basically, Definition 4.11 slightly modifies Definition
3.2 by allowing the detection of noninjective embeddings
and the renaming of some constants. In other words, if
t1 �� t2, two distinct paths in t1 may be mimicked (i.e.
simulated) by a single path appearing in t2 modulo (a pos-
sible) renaming of some leaves of t1.

Example 4.12 Consider the terms t1 ≡ f(g(a), g(b))
and t2 ≡ f(g(d, e)) which are depicted in Figure 3. Then,
t1 �� t2 and t2 �� t1, but we have t1 �� t2 w.r.t. the func-
tion {(tag, a) �→ c, (tag′, b) �→ d | tag, tag′ ∈ Tag∗}
as shown in Figure 3 by means of dashed arrows. More-
over, note that the two distinct t1’s edges from f to g are
represented in t2 by a single edge from f to g.

By using Definition 4.11, we are able to represent and map
any concrete path of a concrete term into a path of an ab-
stract term. Somehow the structure and the labeling of a
concrete term t may be represented in a compressed and
suitable relabeled version of t in which many paths of t
can be mapped to one shared path of the abstract descrip-
tion of t as stated by the following proposition.

Proposition 4.13 Let t ∈ τ(Text ∪ Tag,V). Let α ::
τ(Text ∪Tag,V)→ τ(Text ∪Tag,V) be a term abstrac-
tion function whose text abstraction function is atext ::
Tag∗ × Text → Text . Then, t �� α(t) w.r.t. atext.

PROOF. (sketch) We proceed by induction on the struc-
ture of t.

f

g g

a b

f

g

c d

(t2)(t1)

Figure 3. Abstract embedding

Case t ≡ X, X ∈ V . By Definition 4.11, X �� t′ for any
t′ ∈ τ(Text ∪ Tag,V) w.r.t. atext. Hence X ��

α(X) w.r.t. atext.

Case t ≡ w, w ∈ Text . By Definition 4.2,
atext(seq, w) ≡ c, for some seq ∈ Tag∗.
Hence, w �� α(w) w.r.t. atext.

Case t ≡ f(t1, . . . , tn), n > 0. By Definition 4.2, we
have

root(α(t)) ≡ root(t).

Hence, α(t) ≡ f(t′1, . . . , t
′
m). Observe that, when-

ever m < n, some root symbols of terms t1, . . . , tn
have been compressed with the aim of reducing the
arity of f . Moreover, note that compression pre-
serves the paths of t. That is, if there exists a path
from x to y in t, then there exists a corresponding
path in α(t). Thus, each t′j of α(t) may correspond
to many ti’s which are included in t. Therefore, we
can define the total (possibly, non-injective) func-
tion π :: {1, . . . , n} → {1, . . . , m} in the following
way: π(i) = j, where root(ti) ≡ root(tj) and t′j in
f(t′1, . . . , t

′
m) corresponds to ti in f(t1, . . . , tn). By

using such a definition of π and the inductive hypoth-
esis, we get ti �� t′π(i) w.r.t atext. Consequently,

t �� α(t) w.r.t. atext.

�

Roughly speaking, Proposition 4.13 says that α(t)
safely approximates the (concrete) term t.

Example 4.14 Consider again the terms t1 and t2 of Fig-
ure 3. Let atext :: Tag∗ × Text → Text be defined as
{(f.g, a) �→ c, (f.g, b) �→ d}. Assume that there exists a
Web specification in which the maximal arity of g equals to
1, so that the compression of the t1’s nodes labeled with
g is enabled. Then, α(t1) ≡ t2 and t2 �� α(t1) w.r.t.
function atext.



Thus, Propositon 4.13 states that abstract terms simulate
the concrete terms through an abstract embedding (i.e., the
�� relation w.r.t. a suitable renaming function). In the fol-
lowing, we demostrate that such a property is preserved
by partial rewriting. In other words, whenever a partial
rewrite step t1 ⇀ t2 is executed in the concrete domain,
a partial rewrite step over the abstract counterpart is en-
abled, in symbols α(t1) ⇀ t′2, such that t2 still simulates
the obtained abstract term t′2 w.r.t. ��. The following
property holds.

Proposition 4.15 Let s, t ∈ τ(Text ∪ Tag,V).
Let α :: τ(Text ∪ Tag,V) → τ(Text ∪ Tag,V) be a
term abstraction function with text abstraction function
atext :: Tag∗ × Text → Text . Let J ≡ (IN , IM , R)
be a Web specification, and J α ≡ (Iα

N , Iα
M , R) be the

abstract version of J . If s ⇀IM t, then

• α(s) ⇀Iα
M

t′

• t �� t′ w.r.t. atext

PROOF. (sketch) Consider s, t ∈ τ(Text ∪ Tag,V)
such that s ⇀IM t via the rule l ⇀ r 〈q〉 ∈ IM ,
q ∈ {A, E}. Therefore, t ≡ rσ for some substitution
σ = {X1/s1, . . . , Xn/sn}. Now, observe the following
two facts.

(i) Given the abstract rule α(l) ⇀ α(r) 〈q〉 ∈ Iα
M , by

applying Definition 4.5, we have α(l) ≡ l (resp.,
α(r) ≡ r) modulo renaming of some constants in
l (resp. r) via atext. In particular, l �� α(l) w.r.t.
atext (resp., r �� α(r) w.r.t. atext).

(ii) Given a term t ∈ τ(Text ∪Tag,V), the arity of each
symbol f appearing in α(t) is reduced as far as it
overcomes the maximal arity of f appearing in IM

(see Definition 4.8).

Fact (i) and Fact (ii) imply that if l � s|w, then α(l) �
α(s)|w′ , w ∈ OTag(s), w′ ∈ OTag(α(s)). Therefore,
α(s) ⇀Iα

M
t′ via α(l) ⇀ α(r) 〈q〉 ∈ Iα

M , and t′ ≡
α(r)σα , where σα = {X1/α(s1), . . . , X2/α(sn)}. Now,
by Proposition 4.13, s �� α(s) w.r.t. atext, and conse-
quently si �� α(si) w.r.t. atext, i = 1, . . . , n. Moreover
by Fact (ii), we have r �� α(r) w.r.t. atext. Hence,
rσ �� α(r)σα w.r.t. atext. Finally,

t ≡ rσ �� α(r)σα ≡ t′ w.r.t. atext

. �

Proposition 4.15 can be generalized to partial rewrite
sequences using a simple inductive argument. More for-
mally,

Proposition 4.16 Let α :: τ(Text ∪Tag,V)→ τ(Text ∪
Tag,V) be a term abstraction function with text abstrac-
tion function atext :: Tag∗ × Text → Text . Let
J ≡ (IN , IM , R) be a Web specification, and J α ≡
(Iα

N , Iα
M , R) be the abstract version of J .

If t0 ⇀IM t1 ⇀IM . . . ⇀IM tn, n ≥ 0, then

1. α(t0) ⇀Iα
M

t′1 ⇀Iα
M

. . . ⇀Iα
M

t′n;

2. tn �� t′n w.r.t. atext

PROOF. We proceed by induction on the length n of the
concrete partial rewrite sequence.

Case n = 0. In this case, we trivially have tn ≡ t0,
hence t′n ≡ α(tn) which directly implies claim 1.
To prove claim 2, observe that, by Proposition 4.13,
tn �� α(tn) ≡ t′n w.r.t. atext.

Case n > 0. We consider the following concrete partial
rewrite sequence

t0 ⇀IM t1 ⇀IM . . . ⇀IM tn, n > 0.

By inductive hypothesis, there exists α(t0) ⇀Iα
M

t′1 ⇀Iα
M

. . . ⇀Iα
M

t′n−1 such that tn−1 �� t′n−1 w.r.t.
atext. Since tn−1 �� t′n−1, t′n−1 ≡ α(tn−1). By
Proposition 4.15, we obtain t′n−1 ≡ α(tn−1) ⇀Iα

M

t′n such that tn �� t′n. Therefore, by composing the
computed abstract partial rewrite sequences, we ob-
tain

α(t0) ⇀Iα
M

t′1 ⇀Iα
M

. . . ⇀Iα
M

t′n

with tn �� t′n w.r.t. atext.

�

Given an (abstract) partial rewrite sequence Sα ≡
α(t1) ⇀Iα

M
t′2 ⇀Iα

M
. . . ⇀Iα

M
t′n, we call abstract com-

pleteness requirement any term appearing inS α. Now, our
verification methodology works as follows: first, we com-
pute the concrete completeness requirements and, then,
we check whether such requirements are fulfilled in the
considered Web site. As explained in Section 3.1, a com-
pleteness requirement r is a term which occurs in a partial
rewrite sequence of the form p ≡ t0 ⇀ t1 ⇀ t2 . . . ⇀
tn ≡ r, where p ∈ τ(Text ∪ Tag) is a Web page of the
Web site W and r ∈ τ(Text∪Tag) is the computed (com-
pleteness) requirement. Therefore, by Proposition 4.16,
we can directly conclude that each concrete requirement
is safely approximated by its abstract description. More
formally, the following corollary holds.



Corollary 4.1 Let α :: τ(Text ∪ Tag,V) → τ(Text ∪
Tag,V) be a term abstraction function with text abstrac-
tion function atext :: Tag∗ × Text → Text . Let W be
a Web site, and W α be the abstract version of W . Let
(IN , IM , R) be a Web specification, and (I α

N , Iα
M , R) be

the abstract version of (IN , IM , R).
If r is a completeness requirement for W computed by

(IN , IM , R), then there exists an abstract completeness
requirement rα for Wα computed by (Iα

N , Iα
M , R) such

that r �� rα w.r.t. atext.

The fact that any concrete completeness requirement is
safely approximated by an abstract completeness require-
ment ensures that the abstract verification is safe, that is,
whenever an abstract requirement is fulfilled in the ab-
stract Web site, each concrete representation is fulfilled
in the concrete domain. This allows us to conclude the
absence of concrete errors in the case when no abstract
errors are detected.

Formally, the following theorem holds.

Theorem 4.1 Let α :: τ(Text ∪ Tag,V) → τ(Text ∪
Tag,V) be a term abstraction function with text abstrac-
tion function atext :: Tag∗ × Text → Text . Let W be
a Web site and W α be the abstract version of W . Let
J ≡ (IN , IM , R) be a Web specification, and J α ≡
(Iα

N , Iα
M , R) be the abstract version of J . Then,

Wα does not contain any abstract (univer-
sal/existential) completeness error w.r.t. J α, then
W does not contain any concrete (universal/existential)
completeness error w.r.t. J .

PROOF. (sketch) First of all, we show that if α(t) � α(p),
t ∈ τ(Text ∪ Tag,V), p ∈ W , then t � p (require-
ment safeness property). By contradiction, we assume
that t �� p. This amounts to saying that there is a path in t
which is not recognized in p. On the other hand, by Propo-
sition 4.13, we have t �� α(t) w.r.t. atext, and hence all
the paths in t are simulated (recognized) in α(t). Since
α(t) � α(p), all the paths in t are recognized in α(p).
And finally, by Proposition 4.13, p �� α(p) w.r.t. atext,
all the paths in t are recognized in p, which leads to a con-
tradiction.
Now, we use this result to prove the theorem. In the fol-
lowing, we will distinguish three cases according to the
kind of completeness errors we want to detect.

Existential completeness error. By contradiction, we
assume there exists a concrete existential complete-
ness error

(r, {p1, p2, . . . , pn}, E)

in W w.r.t. J . That is, there exists p ∈ W such
that p ⇀+

IM
r and {p1, p2, . . . , pn} is not existen-

tially complete w.r.t. r (i.e. ∀ i = 1, . . . , n, w ∈
OTag(pi), r �� pi|w). By Corollary 4.1, r �� α(r)
w.r.t. atext. On the other hand, W α does not contain
any abstract existential completeness error w.r.t. J α.
This implies that any computed abstract requirement
rα is embedded in some pα ∈ Wα. In particular,
the abstract requirement α(r) is embedded in some
α(pi) ∈ {α(p1), . . . , α(pn)} ⊆ Wα (in symbols,
∃ i = 1, . . . , n, w ∈ OTag(α(pi)), α(r) � α(p)i|w).
By the requirement safeness property, we then derive
r � pi|w′ , which leads to a contradiction, as we sup-
posed that {p1, p2, . . . , pn} is not existentially com-
plete w.r.t. r.

Missing Web page error. Analogous to the first case.

Universal completeness error. Analogous to the first
case.

�

Note that —whenever we detect an abstract complete-
ness error— we are not able to guarantee the presence of a
concrete completeness error. This is mainly due to the fact
that the abstraction can enable partial rewriting steps over
abstract descriptions which are not possible in the con-
crete domain. Thus, there might be an abstract require-
ment which does not correspond to any concrete require-
ment, as illustrated by the following example.

Example 4.17 Consider the following set IM of com-
pleteness rules of a Web specification

r1) f(X, Y ) ⇀ m 〈E〉
r2) f(a, b) ⇀ m′ 〈E〉

and the Web site W = {f(f(a), f(b), h(c)), m}. Assume
that the text abstract function atext :: Tag ∗ × Text →
Text is defined as atext( , t) = t for each t ∈ Text .
Then,

Wα = {f(f(a, b), h(c)), m}.
Moreover, the abstract description of IM is equal to IM

(i.e. IM ≡ Iα
M ). The set of concrete requirements of W

w.r.t. IM is {m}; while the set of abstract requirements of
Wα w.r.t. Iα

M is {m, m′}. Note that m′ is not fulfilled in
Wα, as it is not embedded in any abstract page of W α,
that is, m′ represents an abstract completeness error. On
the other hand, requirement m′ cannot be computed in the
concrete domain, since rule r2 cannot be applied to Web
pages in W . Consequently, m′ is not responsible for any
concrete completeness error in W .



The approximation we considered allows us to estab-
lish a safe connection between abstract and concrete cor-
rectness errors as well. In particular, we are able to ensure
that whenever an abstract correctness error is detected, a
corresponding correctness error must exist in the concrete
counterpart.

Given a concrete correctness error e ≡ (p, w, l, σ), we
define α(e) ≡ (α(p), wα, α(l), α(σ)), wα ∈ OTag(α(p)).

Theorem 4.2 Let α :: τ(Text ∪ Tag,V) → τ(Text ∪
Tag,V) be a term abstraction function with text abstrac-
tion function atext :: Tag∗ × Text → Text . Let W be
a Web site and W α be the abstract version of W . Let
J ≡ (IN , IM , R) be a Web specification such that α is
correct w.r.t. IN , and J α ≡ (Iα

N , Iα
M , R) be the abstract

version of J .
If W α contains an abstract correctness error

eα ≡ (pα, wα, lα, σα)

w.r.t. J α, then W contains a concrete correctness error
e ≡ (p, w, l, σ) w.r.t. J such that α(e) ≡ eα.

PROOF. (sketch) By contradiction, we assume there exists
no concrete correctness error in the Web site W such that
eα ≡ α(e).
The fact that there exists an abstract correctness error

(pα, wα, lα, σα)

in an abstract Web page pα w.r.t. the abstract rule rlα ≡
lα ⇀ error|C ∈ Iα

N implies that lα � pα
|wα , for some

wα ∈ OTag(pα), and Cσα holds.
Now, by Proposition 4.13, we derive (i) p � � pα ≡ α(p)
w.r.t. atext, and (ii) l �� lα ≡ α(l) w.r.t. atext. By
(i), (ii), and lα � pα

|wα , we can conclude that l � p|w,
w ∈ OTag(p). Besides, α is correct w.r.t. IN , and Cσα

holds. Thus, Cσ holds.
Summing up, there exists l ⇀ error|C which detects a
concrete correctness error (p, w, l, σ) w.r.t. J , which con-
tradicts the initial hypothesis. �

To conclude, by the approximation scheme formalized
so far, we are able to apply the original verification frame-
work to abstract data, providing an extremely efficient
analysis which is able to locate correctness errors as well
as to ensure the absence of completeness errors in the con-
crete descriptions quickly, saving time to the user.

In order to improve the efficiency of the analisys, the
following optimization has been developed: whenever an
abstract completeness error is found, the abstract verifica-
tion process is stopped. Unfortunately, if we want to check
exactly the location of the errors, the concrete methodol-
ogy should be executed from scratch. Nevertheless, if we

divide a Web site into modules we can perform the analy-
sis modularly and execute the (heavier) concrete method-
ology only on those modules where the abstract analysis
detects potential mistakes.

5 Implementation

An experimental implementation αVerdi of the abstract
framework proposed in this paper has been developed and
compared to the previous Verdi implementation for the
realistic test cases given in [6], which are randomly gen-
erated by using the XML documents generator xmlgen
(available within the XMark project [13]). The tool xml-
gen is able to produce a set of XML data, each of which is
intended to challenge a particular primitive of XML pro-
cessors or storage engines.

Table 1 shows some of the results we obtained for the
simulation of two different Web specification rules WS1
and WS2 for the on–line auction system in five differ-
ent, randomly generated XML documents. Specifically,
we tuned the generator for scaling factors from 0.01 to 0.1
to match an XML document whose size ranges from 1Mb
–corresponding to an XML tree of about 31000 nodes– to
10Mb –corresponding to an XML tree of about 302000
nodes–.

Web specification WS1 aims at checking the verifi-
cation power of our tool regarding data correctness, and
thus includes only correctness rules. The specification
rules of WS1 contain complex and demanding constraints
which involve conditional rules with a number of member-
ship tests and functions evaluation. The Web specification
WS2 aims at checking the completeness of the randomly
generated XML documents. In this case, some critical
completeness rules have been formalized which involve
the processing of a significant amount of completeness re-
quirements.

The results shown in Table 1 were obtained on a per-
sonal computer equipped with 1Gb of RAM memory,
40Gb hard disk and a Pentium Centrino CPU clocked at
1.75 GHz running Ubuntu Linux 5.10.

For each Web specification WS1 and WS2, column
V erdi shows the runtime of the original WebVerdi-M
tool. Column App shows the time used for the approx-
imation of the Web site w.r.t. the corresponding abstract
Web specification. Finally, column αVerdi shows the ex-
ecution time of the abstract verification tool αVerdi.

The preliminary results that we have obtained demon-
strate a huge speedup w.r.t. our previous methodology. At
the same time, the abstraction times are affordable given
the complexity and size of the involved data sets: less
than 5 minutes for the largest benchmark (10 Mb), with
a very reduced space budget. We note that the original



Nodes
Scale Time

factor WS1 WS2
Verdi App αVerdi Verdi App αVerdi

30 th 0.01 0.96 s 11 s 0.14 s 165 s 11 s 0.92 s
90 th 0.03 2.84 s 154 s 0.42 s 1768 s 154 s 3.01 s

150 th 0.05 5.94 s 732 s 0.75 s 4712 s 732 s 52.45 s
241 th 0.08 9.42 s 5, 330 s 1.23 s 12503 s 5, 330 s 186.22 s
301 th 0.10 12.64 s 8, 132 s 1.52 s 21208 s 8, 132 s 285.51 s

Table 1. Verdi-M Benchmarks

WebVerdi-M implementation was only able to process ef-
ficiently XML documents whose size was not bigger than
1Mb.

6 Conclusion

Web developing tends to create data that exhibit many
commonalities which often result in extremely inefficient
Web site verification models and methodologies. This pa-
per describes a novel abstract methodology for Web sites
analysis and verification which offsets the high execution
costs of analyzing complex Web documents. The frame-
work is formalized as a source-to-source transformation
which is parametric w.r.t. the abstraction and translates the
Web documents and their specifications into constructions
of the very same languages, so that an efficient implemen-
tation can be easily derived with very little effort. The
key idea for the abstraction is to exploit the sub–structure
similarity that is commonly found in HTML/XML docu-
ments. Note that no automatic abstraction refinement is
needed because no relevant parts are lost due to abstrac-
tion.

In this work we have developed the idea of an “hor-
izontal compression”. We are currently working on re-
ducing terms also “vertically” by encoding tree paths into
single nodes [25]. This is not straightforward if we want
to achieve it by a source-to-source transformation, since
the abstract embedding should be generalized in order to
allow matching between explicit tree paths (i.e. sequences
of tree nodes) and nodes of the Web page templates which
implicitly represent tree paths.
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